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NONLINEAR WAVES IN AN ULTRARELATIVISTIC
HEAT-CONDUCTING FLUID II (ECKART FORMULATION)
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ABSTRACT. In this paper a second-order theory for relativistic heat-conducting fluids is
derived in the Eckart scheme, based on the assumption that the entropy 4-current should
include quadratic terms in the heat flux. In the special case of ultrarelativistic fluids, the
velocities of hydrodynamic and thermal weak discontinuity wave fronts are determined
and, through the second-order compatibility conditions, the discontinuities associated to
the waves and the transport equations for the amplitude of the discontinuities are found
out. Finally, for heat wave, plane, cylindrical and spherical diverging waves are also inves-
tigated.

1. Introduction

Relativistic irreversible thermodynamics has a rather peculiar history. The first two pro-
posals of relativistic dissipative fluid dynamics came from C. Eckart [1] in 1940 and from
L. Landau and E. M. Lifshitz in the early fifties [2]. The difference in formal appearence
is due to the different choices for the definition of the hydrodynamical 4-velocity. One of
the popular discussions of cosmology is given by fluid approximation [3, 4]. This phe-
nomenological approach to cosmological models requires the adoption of a macroscopic
4-velocity representative of the continuum flow. As we say, we have two natural specifica-
tions for this hydrodynamic field reflecting: the average flux of the constituent particles of
the fluid (the Eckart or particle frame) [1], or the average flux of total energy (the Landau-
Lifshitz or energy frame) [2]. These frames are formally defined as being the normalized
vector parallel to the particle flux and the normalized timelike eigenvector of the energy-
momentum tensor, respectively. The two choices have different computational advantages.
The Landau-Lifshitz formalism is convenient since it reduces the energy-momentum tensor
to a simpler form. Instead, the Eckart formalism has the advantage of a simpler integration
of particle conservation law.

This conventional theories of dissipative fluid dynamics are based on the assumption
that the entropy 4-current contains terms up to first order in dissipative quantities and hence
they are referred to as first order theories of dissipative fluids [5]. The resulting equations
for the dissipative fluxes are linear in the thermodynamic forces, and the resulting equations
of motion are parabolic in structure. It was later shown by W. Israel and coworkers [6, 7]
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that both theories have the undesirable feature that causality principle may not be satisfied.
That is, thermal signals may propagate with speed exceeding that of light.

In order to solve this feature, extended theories of dissipative fluid were introduced.
These causal theories are based on the assumption that the entropy 4-current should

include quadratic terms in the dissipative fluxes and hence they are referred to as second
order theories.

In particular two paths can be followed: the extended irreversible thermodynamics de-
veloped by Jou [8], Müller [9] and Ruggeri [10], but also Galipò [11] and Giambò [12],
allowing the inclusion of the dissipative quantities in the expression of the entropy den-
sity and the entropy flux due to a generalized Gibbs relation; or, following Muronga [13],
Israel and Stewart [6, 7, 14], a model that introduces additional dynamical fields through
the assumption that the entropy 4-current includes quadratic terms in the heat flux. This
model has been taken up and developed later by Garcia-Colin and Sandoval-Villalbalzo
[15], Garcia-Perciante et al. [16], Samuelsson et al. [17]. There is also an important
approach to heat conduction, in which one considers a multi-fluid system whose species
are represented by a particle number density current and an entropy flux, in general not
aligned with the particle flux [18]. This model has been recovered and developed recently
by Lopez-Monsalvo and Andersson [19] and Andersson and Comer [20]. The resulting
equations for the dissipative fluxes are hyperbolic and they lead to causal propagation of
signals [6, 7, 13, 14, 21, 22, 23].

In second order theories the space of thermodynamic quantities is extended to include
the dissipative quantities which are treated as field variables as well.

This last approach is the base of the model presented in this paper. Our aim is to deduce
a second order theory for relativistic heat-conducting fluids, in the Eckart scheme, based
on the assumption that the entropy 4-current includes quadratic terms in heat flux and to
determine, in the special case of ultrarelativistic fluids, the velocities of hydrodynamical
and thermal weak discontinuity waves.

More precisely, this paper is outlined as follows. In Section 2 the equilibrium ther-
modynamics of relativistic perfect fluids is described. In Section 3 the formulation of
relativistic heat-conducting fluid model in Eckart scheme is introduced. A second order
theory following the second approach in the Landau-Lifshitz scheme can be found in [24].
In Section 4 the propagation of weak discontinuity is investigated. In Section 5 the special
case of ultrarelativistic fluids is considered. In Section 6 the transport equation describing
the evolution, along the rays, of the amplitude of the discontinuities is determined. In par-
ticular, the hydrodynamic wave is discussed and the thermal wave, in special case of plane,
cylindrical and spherical diverging waves is investigated.

Throughout this paper, a coordinate system xα, being x0 = t the time and xi the spatial
coordinates in the flat space–time of special relativity is introduced. The fundamental
metric tensor gαβ is defined by: g00 = 1, gii = −1, gαβ = 0, for α ̸= β, where the
velocity of light in the vacuum, c, is set equal to 1.

Greek indices range over 0, 1, 2, 3 and the Latin ones over 1, 2, 3.

The notation ∂α =
∂

∂xα
represents the partial derivative with respect to xα.
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2. Basic of equilibrium fluid dynamics

When we study the equilibrium thermodynamics three important variables must be
taken into account: the energy density ρ, the particle number density r and the specific
entropy S. The energy density and the particle number density are related by

ρ = r(1 + ε) , (1)

where ε is the specific internal energy.
These basic quantities will be referred to as primary thermodynamic variables, from

which to deduce all other state variables, such as the pressure p.
From the equation of state for the entropy density s = rS, s = s(ρ, r), and Euler

relation

µ =
ρ+ p

r
− TS , (2)

defining chemical potential µ, the fundamental Gibbs equation can be written as:

Tds = dρ− µdr , (3)

where T denotes the temperature.
Eq. (2) defines the last unknown thermodynamic function p.
In relativistic fluid dynamics it is necessary to operate with covariant object, so all the

thermodynamic quantities are expressed in terms of the 4-vector number current Rα
eq , the

energy-momentum tensor Tαβ
eq and the entropy 4-current Sα

eq at equilibrium

Rα
eq = ruα , (4)

Tαβ
eq = ρuαuβ − pγαβ , (5)
Sα
eq = rSuα , (6)

where uα is the unitary hydrodynamical 4-velocity (uαuα = 1), whereas γαβ = gαβ −
uαuβ is the spatial projection tensor orthogonal to uα.

Therefore, the equilibrium state is described by five independent variables ρ, r, uα.
The thermodynamic relation (3) can be rewritten in terms of the covariant quantities

Rα
eq , Tαβ

eq and Sα
eq

dSα
eq = −µ

T
dRα

eq +
1

T
uβdT

αβ
eq . (7)

From eqs. (2)-(6) it follows immediately that

Sα
eq =

p

T
uα − µ

T
Rα

eq +
1

T
uβT

αβ
eq , (8)

d
 p
T
uα


= Rα

eqd
µ
T


− Tαβ

eq d
uβ
T


. (9)

So the covariant form of particle, energy, momentum and entropy conservation equations
reads as

∂αR
α
eq = 0 , i.e. uα∂αr + r∂αu

α = 0 , (10)

∂βT
αβ
eq = 0 , i.e. (ρ+ p)uβ∂βu

α + uαuβ∂βρ− γαβ∂βp = 0 , (11)

∂αS
α
eq = 0 , i.e. uα∂α(rS) + rS∂αu

α = 0 , (12)

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 90, No. 1, A2 (2012) [18 pages]
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where the spatial projection of (11) and its projection along uα are, respectively,

γαβ ∂λT
βλ
eq = 0 , i.e. (ρ+ p)uβ∂βu

α − γαβ∂βp = 0 , (13)

uα∂βT
αβ
eq = 0 , i.e. uα∂αρ+ (ρ+ p)∂αu

α = 0 . (14)

3. Non–equilibrium states

Non–equilibrium effects are introduced by enlarging the space of independent variables
through the introduction of non–equilibrium variables.

In principle, the inclusion of dissipative processes as heat conduction requires additional
terms in the primary variables Rα

eq , Tαβ
eq and Sα

eq describing a perfect fluid.
The next step is to find evolution equations for these extra variables. Whereas the evo-

lution equations for the equilibrium variables are given by the usual conservation laws,
general criteria do not exist concerning the evolution equations of the dissipative fluxes,
with the exception of the restriction imposed on them by the second law of thermodynam-
ics.

However, the presence of a heat transfer involves a problem regarding the definition
of the hydrodynamical 4-velocity uα. In Eckart’s formulation, uα is identified by the 4-
velocity of particle transport (particle frame) [1]. Formally, the particle frame is the unique
time-like vector parallel to Rα

eq .
In presence of irreversible processes as the heat conduction, (4) preserves the same

structure, while small terms ∆Tαβ and ∆Sα have to be added in (5) and (6),

Tαβ = Tαβ
eq +∆Tαβ , (15)

Sα = Sα
eq +∆Sα , (16)

such that the corresponding conservation laws are satisfied

∂αR
α = 0 , (17)

∂αT
αβ = 0 , (18)

and the second law of thermodynamics holds

∂αS
α ≥ 0 . (19)

A non–equilibrium state is characterized by increasing entropy due to the presence of
dissipative fluxes.

The deviations ∆Tαβ and ∆Sα from local equilibrium contain the information about
heat flux and 4-current entropy at non–equilibrium state.

From eq. (18) it follows that

∂αT
αβ = ∂αT

αβ
eq + ∂α


∆Tαβ


= 0 . (20)

Now, by virtue of eqs. (14) and (10) and taking into account the equation for covariant
derivatives along the world lines following from Gibbs relation (3), the following equation
holds the covariant derivative of eq. (3) along the world lines of the fluid defined by uα,
we obtain

T∂α (rSuα) = −uβ∂α

∆Tαβ


. (21)
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The non–equilibrium entropy 4-current Sα = Sα

Rα, Tαβ


takes the form [14]:

Sα =
p

T
uα − µ

T
Rα +

1

T
uβT

αβ +Qα

∆Tαβ


, (22)

where Qα is a function of deviation ∆Tαβ .
For small deviations, in order to obtain equations guaranteeing causality and hyperbol-

icity, it is sufficient to keep only quadratic terms in the Taylor’s expansion of Qα.
By virtue of eqs. (2), (4) and (15), together with the relations [25]:

∆Tαβ = qαuβ + qβuα , qαuα = 0 , qαq
α < 0 , (23)

the most general algebraic form for Sα, at most of second order in the dissipative fluxes
∆Tαβ , is [6, 7, 14, 25]:

Sα = rSuα +
1

T
qα + kE (qµqµ)u

α , (24)

where kE is a thermodynamic coefficient (which in general is a function of the state vari-
ables) accounting for dissipative contribution to the entropy density and qα is the heat flux.

In what follows, in order to simplify the notation, the thermodynamic coefficient will
be denoted only k.

From eq. (24) it follows that the effective entropy density measured by comoving ob-
server is

uαS
α = rS − kq2 , (25)

where q2 = −qαqα. Since the entropy density is maximum at equilibrium, the condition
uαQ

α ≤ 0 (or, equivalently, qαqα < 0) implies that k is nonnegative.
The divergence of extended current (24), together with eq. (21) in which eq. (23)1 have

been taken into account, leads to

∂αS
α = − 1

T 2
qα


∂αT − 2kT 2uλ∂λqα − T 2qα∂λ


kuλ


− Tuλ∂λuα


≥ 0 . (26)

Since qαqα < 0, from eq. (26) it follows that the heat flux is given by

qα = −χγβα

∂βT − 2kT 2uλ∂λqβ − T 2qβ∂λ


kuλ


− Tuλ∂λuβ


, (27)

where the phenomenological coefficient χ(≥ 0) is the thermal conductivity of the fluid.
We can conclude that, in the Eckart scheme, the set of hyperbolic equations describing

the motion of a relativistic heat-conducting fluid is:

r∂αu
α + uα∂αr = 0 ,

(ρ+ p)uα∂αu
β − γαβ∂αp+ uα∂αq

β + qα∂αu
β

+qβ∂αu
α + uαuβqλ∂αuλ = 0 ,

rTuα∂αS + ∂αq
α − uαqβ∂αuβ = 0 ,

qα = −χγβα

∂βT − 2kT 2uλ∂λqβ − T 2qβ∂λ


kuλ


− Tuλ∂λuβ


, (28)

in the 8 independent field variables r, T , uα, qα.
If we assume r and T as state variables, then p = p(r, T ) and S = S(r, T ). This means

that

∂αp =


∂p

∂r


T

∂αr +


∂p

∂T


r

∂αT , (29)
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and

∂αS =


∂S

∂r


T

∂αr +


∂S

∂T


r

∂αT . (30)

4. Weak discontinuities propagation

Consider now a propagating time–like, singular hypersurface Σ defined by

ϕ(xα) = 0 , xα = xα(wA) , (31)

where wA, A = 0, 1, 2, are the coordinates on Σ.
Let aAB and bAB be, respectively, the components of the first and second fundamental

covariant tensors of Σ. Let Nα be the space–like unit normal vector to Σ.
Now let us recall the following relations [26]:

aAB = gαβx
α
,Ax

β
,B , NαN

α = −1 ,

Nαx
α
,A = 0 , xα,AB = bABN

α ,

Nα
,α = aABbAB = bAA , Nα

,A = bBAx
α
,B ,

aABxα,Ax
β
,B = gαβ +NαNβ , xα,A = gαβx

β
,A .

(32)

In the above relations, a comma followed by a Greek index denotes the spatial deriv-
ative with respect to xα, whereas a comma followed by a Latin index denotes covariant
derivative with respect to aAB ; since xα are scalar functions of wA, we have

xα,A =
∂xα

∂wA
. (33)

Making use of Hadamard’s method for characteristic hypersurfaces of possible discon-
tinuity, we investigate the problem of propagation of discontinuity surfaces of first order
compatible with system (28), in which the algebraically related variables r, T , uα, qα

are continuous, but their space and time derivatives exhibit jump discontinuities across a
characteristic hypersurface Σ, with tangent direction specified by the normal co–vector of
components Nα. This means that the surface Σ can be interpreted as the wave front of a
propagating weak discontinuity.

The state ahead of the wave Σ is assumed to be uniform and in complete equilibrium.
Let us recall the compatibility conditions, derived by Hadamard’s Lemma, which must

be satisfied across Σ by the partial derivatives of the field variables [27, 28, 29, 30]. For
the first and second partial derivatives, under the assumption that Σ is a weak discontinuity
surface (the first order derivatives of field variables are discontinuous across Σ), they read
as

[F,α] = νNα , (34)

[F,αβ ] = ν̄NαNβ + aABν,A(Nαxβ,B +Nβxα,B) + νbABxα,Axβ,B , (35)

where F is any field variable, the square bracket denotes the jump across Σ, i.e., [F ] =
F2 − F1, subscript 1 and 2 denoting the limiting values of F from each side of the surface
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Σ and ν and ν̄ denote the discontinuities in the normal derivatives. Also
dF

dσ
represents the

rate of change of F as seen by an observer comoving with Σ.
At this point, the following quantities defined on Σ can be introduced:

∂r

∂xα


Nα = −ξ ,


∂T

∂xα


Nα = −ϑ ,


∂uβ

∂xα


Nα = −ωβ ,


∂qβ

∂xα


Nα = −πβ ,

(36)

representing the jumps in the normal derivatives of r, T , uα and qα, respectively.
With respect to a rest frame determined by some preferred time–like unit vector uα, the

velocity, λ, of propagation in the direction of an orthogonal unit space–like vector nα will
be given, for a suitably normalized Nα, by

λ =
L

ℓ
, nα =

1

ℓ
(Nα − Luα) , (37)

where
L = uαNα , ℓ2 = 1 + L2 . (38)

In what follows the medium ahead of Σ is supposed to be uniform and at rest.
In this way, if, as usual [5, 31, 32], small perturbations of the thermal equilibrium are

considered in which no relative transport occours, then it can be chosen

qα = 0 (39)

along the unperturbed flow direction.
Now, the first-order compatibility conditions (34) and condition (39) can be applied to

system (28). Noticing that from (23)2, with assumption (39), it follows that

uαπ
α = uαω

α = 0 ,

we obtain: 

Lξ + rωN = 0 ,

rfLωβ − ℓnβ


∂p

∂r


T

ξ +


∂p

∂T


r

ϑ


+ Lπβ = 0 ,

rTL


∂S

∂r


T

ξ + rTL


∂S

∂T


r

ϑ+ πN = 0 ,

γβαϑNβ − TLωα − 2kT 2Lπα = 0 .

(40)

Multiplying (40)2 by Nβ and (40)4 by Nα the following equations, respectively, are
obtained

ℓ2

∂p

∂r


T

ξ + ℓ2

∂p

∂T


r

ϑ+ rfLωN + LπN = 0 (41)

and
ℓ2ϑ+ TLωN + 2kT 2LπN = 0 , (42)

where ωN and πN are the normal components of the two vectors, ω and π, on Σ.
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System (40)1, (40)3, (41), (42) admits nontrivial solutions in ξ, ϑ, ωN and πN if, and
only if, the determinant of the coefficient matrix vanishes.

In the special case in which p = p(ρ) = p(ρ(r, T )), by virtue of eqs. (2) and (3), the
following relations hold

∂p

∂r


T

=


dp

dρ


∂ρ

∂r


T

= p′

f + rT


∂S

∂r


T


,

∂p

∂T


r

=


dp

dρ


∂ρ

∂T


r

= p′rT


∂S

∂T


r

, (43)

where f = (ρ+ p)/r is the fluid index.
The following characteristic equation for the velocity of propagation λ = L/ℓ is ob-

tained:
L2 − p′ℓ2

 
rT 2


∂S

∂T


r

(1− 2krTf)L2 + r


f + rT


∂S

∂r


T


ℓ2

= 0 . (44)

This equation implies the existence of the two expected well-behaved propagation modes,
which are interpretable as

• a hydrodynamic wave with velocity given by λ21 = p′,

• a heat wave with velocity given by λ22 =
f + rTS′

r

T 2S′
T (2krTf − 1)

,

where

S′
r =


∂S

∂r


T

, S′
T =


∂S

∂T


r

.

In addition, from system (40), the solution L = 0, which represents a wave moving
with the fluid, is obtained. The corresponding discontinuities satisfy the equations

ξ = 0 ,
ϑ = 0 ,
ωN = 0 ,
πN = 0 .

(45)

Since the coefficients characterizing the discontinuities exhibit four degrees of freedom,
then system (40) admits four independent eigenvectors corresponding toL = 0 in the space
of the field variables.

5. Ultrarelativistic fluids

In the case of ultrarelativistic fluid the energy density and the particle number density
are related only by

ρ = rε , (46)
because r << rε. This relation implies that the pressure law is:

p = ρ(γ − 1) , (47)

where γ = Cp/CV is the ratio of specific heats.
In particular, in the case of perfect politropic fluid, the state equation reads as

p = rRT , (48)
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in which R = Cp − CV is the universal gas constant and then

p′ =
dp

dρ
=

R

CV
,


∂p

∂r


T

= RT ,


∂p

∂T


r

= rR ,
∂S

∂r


T

= −R
r
,


∂S

∂T


r

=
CV

T
, f = (R+ CV )T = CpT . (49)

By virtue of relations (49), system (40)1, (40)3, (41), (42) can be written as

Lξ + rωN = 0 ,

RTℓ2ξ + rRℓ2ϑ+ rfLωN + LπN = 0 ,

−RTLξ + rCV Lϑ+ πN = 0 ,

ℓ2ϑ+ TLωN + 2kT 2LπN = 0 ,

(50)

and the velocities of propagation write as

λ21 =
R

CV
, λ22 =

1

2krTf − 1
. (51)

6. Discontinuity transport equation

Now we determine the discontinuities associated to the first and second sound and the
transport equation describing the evolution, along the rays, of the amplitude, ψ, of the
discontinuities, for an ultrarelativistic fluid.

In order to deduce the transport equation, the discontinuities in the second order partial
derivatives along the normal vector of particle number density r, temperature T , unitary
hydrodynamical 4-velocity uα and heat flux qα must be introduced and are denoted by

∂2r

∂xαxβ


NαNβ = ξ̄ ,


∂2T

∂xαxβ


NαNβ = ϑ̄ ,

∂2uµ

∂xαxβ


NαNβ = ω̄µ ,


∂2qµ

∂xαxβ


NαNβ = π̄µ . (52)

Furthermore, we assume that k = k(r, T ).
Now, differentiating system (28) with respect to xγ , computing the jumps, using (52)

and the second-order compatibility conditions (35) and then multiplying by Nγ , following
system is obtained: 

Lξ̄ + rω̄N = A ,

RTℓ2ξ̄ + rRℓ2ϑ̄+ rfLω̄N + Lπ̄N = B ,

−RTLξ̄ + rCV Lϑ̄+ π̄N = C ,

ℓ2ϑ̄+ TLω̄N + 2kT 2Lπ̄N = D ,

(53)
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A2-10 S. GIAMBÒ, V. LA ROSA AND G. MUSCIANISI

where

A = −ℓ dξ
dσ

− raABωα
,Axα,B − 2ξωN ,

B = −

rfℓ

dωN

dσ
+RTLℓ

dξ

dσ
+ rRLℓ

dϑ

dσ
+ ℓ

dπN
dσ

+ 2Rℓ2ξϑ+ L2πλωλ

+3πNωN + rfω2
N + (f + 2RT )LξωN + (rCV + 3rR)LϑωN


,

C = RTℓ
dξ

dσ
− rCV ℓ

dϑ

dσ
− aABπα

,Axα,B + (R− CV )Lξϑ

+RTξωN − rCV ϑωN + Lπβωβ , (54)

D = −

Lℓ
dϑ

dσ
+ 2kT 2ℓ

dπN
dσ

+ Tℓ
dωN

dσ
+ 3krT

2LξπN + 3kTT
2LϑπN

+4kTLϑπN + 3kT 2ωNπN + 3LϑωN

+Tω2
N − 2kT 2L2ωβπβ − TL2ωβω

β +
1

χ
πN


.

In equations (53)-(54), the derivative along the ray is used and for a given function F it
is given by

dF

dσ
=

1

ℓ
aABuαxα,BF,A , (55)

where σ is the ray parameter and the ray derivatives of the jumps of unitary hydrodynamical
4-velocity uα and heat flux qα are given by

dωN

dσ
=
dωβ

dσ
Nβ ,

dπN
dσ

=
dπβ
dσ

Nβ . (56)

At this point, we are able to determine the transport equations for the two amplitudes
ψ1 and ψ2 in the two wave modes.

Let us consider separately the two waves.

6.1. Hydrodynamic wave. For the first wave, from system (50), in which the velocity of
propagation is λ21 = R/CV , the following system relative to the discontinuities associated
to the wave is obtained: 

ξ =
rℓ

L
ψ1 ,

ϑ =
TL

ℓ
ψ1 ,

πN = 0 ,

πα = 0 ,

ωα = ψ1nα ,

(57)

where ψ1 = −1

ℓ
ωN .

The transport equation for ψ1 can now be deduced.
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Using (32), (37)2, (55), (56) and (57), we obtain the following relations:

aABωα
,Axα,B = −Ldψ1

dσ
+

2

ℓ
Ωψ1 , (58)

where Ω is the mean curvature of the hypersurface Σ and
dξ

dσ
=
rℓ

L

dψ1

dσ
,

dϑ

dσ
=
TL

ℓ

dψ1

dσ
,

dωN

dσ
= −ℓdψ1

dσ
, (59)

ξωN = −rℓ
2

L
ψ2
1 , ξϑ = rTψ2

1 , ω2
N = ℓ2ψ2

1 , ϑωN = −TLψ2
1 . (60)

Using (58)-(60) into system (53), the following transport equation for the amplitude ψ1

is get:
dψ1

dσ
+
L

ℓ
Ωψ1 − ψ2

1 = 0 . (61)

In order to integrate equations (61), we introduce the “proper time”, τ, defined by

ℓdσ = dτ (62)

and equation (61) writes as
dψ1

dτ
+
L

ℓ2
Ωψ1 −

1

ℓ
ψ2
1 = 0 , (63)

where
1

ℓ2
= 2− γ ⇒ 1

ℓ
=


2− γ .

If we put a0 = − L

ℓ2
= −(2− γ)L, i.e. the constant speed of propagation of the wave

multiplied by
1

ℓ
, and P0 = −

√
2− γ, the transport equation for ψ1 can be rewritten as

dψ1

dτ
− a0Ωψ1 + P0ψ

2
1 = 0 . (64)

It has, therefore, that the amplitude of the discontinuity is governed by Bernoulli equation
[33, 34].

In the present context, the quantities with subscript 0 appearing in (64) are evaluated in
the local rest frame, so they are constants.

Since the mean curvature Ω at any point of the wave surface Σ admits the representation
[35]

Ω =
Ω0 − k0a0τ

1− 2Ω0a0τ+ k0a20τ
2
, (65)

where Ω0 and k0 are the mean and Gaussian curvatures of Σ at τ = 0, respectively, eq.
(64) can be integrated to yield [36, 37]

ψ1 =
ψ01(1− 2a0Ω0τ+ k0a

2
0τ

2)−1/2

1 + P0ψ01

 τ

0
(1− 2a0Ω0τ+ k0a20τ2)−1/2dτ , (66)

where ψ01 is the value of ψ1 on the wave front at τ = 0.
As can be easily noticed, the transport equation (64) is nonlinear. So a critical time may

exist at which the weak discontinuity wave Σ evolves into a shock wave, in the sense that
the amplitude ψ1 of the discontinuity of the first-order derivatives becomes infinite as τ
tends to the critical time, τc > 0.
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Consider now equation (64). In order to focus on the physical aspects, we discuss now
the case of plane waves.

For a plane wave front Ω0 = k0 = 0 and eq. (66) yields

ψ1 =
ψ01

1 + P0ψ01τ
. (67)

Eq. (67) shows that if ψ01 > 0 (i.e., an expansive wave front), a critical time appears

τc =
1√

2− γψ01
, (68)

at which the amplitude blows up (i.e., ψ1 → ∞ as τ → τc). Thus, at the time τc the
velocity gradient on the wave front becomes infinite and the weak discontinuity evolves
into a shock wave.
As can be easily observed, for γ = 2 the solution ψ1 = ψ01 exists ∀τ ≥ 0.

Conversely, if ψ01 < 0 (i.e., a compressive wave front), the denominator of the eq. (67)
does not vanishes for any τ and discontinuity decays since ψ1 → 0 as τ → ∞.

6.2. Heat wave. For the second wave the velocity of propagation is λ22 = 1/(2krTf − 1)
and we obtain the following system for the discontinuities:

ξ = − ℓ

fL
ψ2 ,

ϑ =
Tℓ

rfL
ψ2 ,

ωN =
ℓ

rf
ψ2 ,

ωα = − 1

rf
ψ2nα ,

πα = ψ2nα ,

(69)

where ψ2 = −1

ℓ
πN .

As for the first wave, we can deduce the transport equation for the amplitude ψ2.
Using (32), (37)2, (55), (56) and (69), we obtain the following relations:

aABπα
,Axα,B = −Ldψ2

dσ
+

2

ℓ
Ωψ2 , (70)

and
dξ

dσ
= − ℓ

fL

dψ2

dσ
,

dϑ

dσ
=

Tℓ

rfL

dψ2

dσ
,

dπN
dσ

= −ℓdψ2

dσ
, (71)

ξωN = − ℓ2

rf2L
ψ2
2 , ξϑ = − Tℓ2

rf2L2
ψ2
2 , ωαπ

α =
1

rf
ψ2
2 , ϑωN =

Tℓ2

r2f2L
ψ2
2 ,

(72)
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ωNπN = − ℓ2

rf
ψ2
2 , ξπN =

ℓ2

fL
ψ2
2 , ϑπN = − Tℓ2

rfL
ψ2
2 , ωαω

α = − 1

r2f2
ψ2
2 .

(73)
Using (70)-(73) into system (53), the following transport equation for the amplitude ψ2

can be deduced:
dψ2

dσ
+
L

ℓ
Ωψ2 +

rfL2

2Tχℓ
ψ2 −Qψ2

2 = 0 , (74)

where

Q =
1

2


7(1− krTf)

rf
− 2kT

2krTf − 1
+ 3T (krr − kTT )


L2 .

By virtue of relation (62), equation (74) writes as

dψ2

dτ
+
L

ℓ2
Ωψ2 +

rfL2

2Tχℓ2
ψ2 −

Q

ℓ
ψ2
2 = 0 , (75)

where
1

ℓ2
=

2(krTf − 1)

2krTf − 1
⇒ 1

ℓ
=


2(krTf − 1)

2krTf − 1
.

Analogously to the previous case, if we put

Λ0 =
rf

2Tχ

L2

ℓ2
=

rf

2Tχ(2krTf − 1)
, a0 = − L

ℓ2
= −2(krTf − 1)

2krTf − 1
L ,P0 = −Q

ℓ
,

the transport equation for the amplitude ψ2 can be written as

dψ2

dτ
+ (Λ0 − a0Ω)ψ2 + P0ψ

2
2 = 0 . (76)

Let us underline how nicely this equation shows the interplay of damping and steepen-
ing tendencies in the linear damping term (Λ0 − a0Ω) and the nonlinear steepening term
P0ψ

2
2 .

This equation can be integrated to yield

ψ2 =
ψ02 exp(−Λ0τ)I1(τ)

1 + ψ02P0I2(τ)
, (77)

where ψ02 is the value of ψ2 on the wave front at τ = 0,

I1(τ) = exp


a0

 τ

0

Ω(τ)dτ
and

I2(τ) =

 τ

0

I1(τ) exp(−Λ0τ)dτ .
Introducing the initial principal curvatures k01 and k02 and using (65) where Ω0 =

1
2 (k01 + k02) and k0 = k01k02, we find that

I1(τ) = {(1− k01a0τ)(1− k02a0τ)}−1/2 (78)

and

I2(τ) =

 τ

0

exp(−Λ0τ)
(1− k01a0τ)(1− k02a0τ)dτ . (79)
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We shall now discuss the solution (77) under the assumption that both k01 and k02 are
nonpositive which corresponds to the case of diverging waves.

– Diverging waves

In this case it is easy to verify that I1(τ) and I2(τ) (in the form (78) and (79)) both
converge as τ → ∞.

The denominator of (77) can be written as

1 +
ψ02

ψc

1−

 ∞

τ

F (τ)dτ ∞

0

F (τ)dτ
 , (80)

in which the quantity ψc defined by

ψc =


P0

 ∞

0

F (τ)dτ−1

, (81)

where F (τ) = {(1− k01a0τ)(1− k02a0τ)}−1/2
exp(−Λ0τ), is finite and its sign de-

pends on P0.
Let us observe that the expression in brace brackets in (80) increases monotonically

from 0 to 1 as τ increases from 0 to ∞.
We can thus conclude that:

• If ψ02 > 0 (i.e. an expansive wave front), and P0 > 0 (so ψc is also positive), it
follows from (77) that ψ2 → 0 as τ → ∞ and the discontinuities damp out.

• If ψ02 > 0 and P0 < 0 (so ψc is negative), we must distinguish two cases:
– If |ψc| < ψ02 it follows from (77) that the denominator will vanish at a finite

time τc > 0 given by ∞

τc

F (τ)dτ =


1− |ψc|

ψ02

 ∞

0

F (τ)dτ . (82)

Hence, from (77) it follows that ψ2 → ∞ as τ → τc, i.e. the wave front
steepens into a shock in finite time τc.

– If |ψc| > ψ02 the wave decays since from (77), ψ2 → 0 as τ → ∞.
• If ψ02 < 0 (i.e. a compressive wave front) and P0 < 0, it follows from (77) that
|ψ2| → 0 as τ → ∞.

• If ψ02 < 0 and P0 > 0, we must distinguish two cases:
– If |ψ02| < ψc, the amplitude decays, since from (77), |ψ2| → 0 as τ → ∞.
– Conversely, if |ψ02| > ψc, then the denominator of (77) will vanish at a finite

time τc given by ∞

τc

F (τ)dτ =


1− ψc

|ψ02|

 ∞

0

F (τ)dτ . (83)
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Hence |ψ2| → ∞ as τ → τc, i.e. the wave front steepens into a shock wave
in finite time τc.

Thus ψc can be seen as critical value of the initial discontinuity in the sense that
all waves with initial discontinuity less than this value attenuate, while all com-
pressive waves with initial discontinuity greater than this value evolve into shock
waves in finite time.

Relations (81) and (82)-(83) can be specialized for waves with plane, cylindrical and
spherical geometry. In particular, the critical value of the initial discontinuity and the
critical time are given by the following relations:

• Plane wave. For a plane wave front k01 = k02 = 0 so,

ψc =
Λ0

P0
,

τc =
1

Λ0
ln


1−

 ψc

ψ02

−1

.

• Cylindrical wave. If the outward travelling discontinuity surface is a cylinder of
radius R0 at time τ = 0, then, at any time τ > τ0, the radius of the cylinder is
given by R = R0 + a0τ. In this case k01 = −1/R0 and k02 = 0, so

ψc =
1

P


Λ0a0
πR0

exp (−Λ0R0/a0)

erfc

Λ0R0/a0

,

erfc


Λ0R0

a0
+ Λ0τc =


1−

 ψc

ψ02

 erfc


Λ0R0

a0
.

• Spherical wave. If the outward travelling discontinuity surface is a sphere of radius
R0 at time τ = 0, then at any time τ > τ0, the radius of the sphere is given by
R = R0 + a0τ. In this case k01 = k02 = −1/R0, so

ψc =
1

P0

a0
R0

exp(−Λ0R0/a0)

Ei(Λ0R0/a0)
,

Ei


Λ0R0

a0
+ Λ0τc


=


1−

 ψc

ψ02

Ei


Λ0R0

a0


.

where

erfc(x) =
2√
π

 ∞

x

e−t2dt , Ei(x) =

 ∞

x

t−1e−tdt ,

are, respectively, the complementary error function and the exponential integral.
If |ψ02| = −|ψc|, it is clear from equation (77) that the wave can neither evolve into a

shock, nor damp out.
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7. Conclusions

A thorough discussion of the relativistic dynamics of fluids includes a number of dissi-
pative processes [38]. The effects of internal dissipation in fluids - viscosity and thermal
conductivity - are well modelled by a generalization of the basic theory called Navier-
Stokes equations. Unfortunately, first approaches to constructing relativistic generaliza-
tions of the Navier-Stokes equations result in rather pathological theories [1, 2]. These
theories are non-causal and without a well-posed initial value formulation (see for exam-
ple [21]). Less straightforward approaches have succeeded in producing a class of causal
dissipative relativistic fluid theories (e.g. Israel [6], Israel and Stewart [7], Ruggeri and
Strumia [39], Pavon, Jou and Casa-Vasquez [40], Hiscock and Lindblom [21, 22], Galipò
[11, 12], Hiscock and Olson [23], Geroch and Lindblom [41], Carter [31], Müller and
Ruggeri [10], Muronga [42, 13], Maartens [43]).

Almost all formulations used Eckart scheme [1] or Landau-Lifshitz approach [2] for
problem of heat conduction.

It is well known that for some interesting applications in a number of contexts RHIC
and LHC [46, 13, 44, 45] are important to develop a robust model of general dissipative
processes [4, 38, 47, 43].

Purpose of authors, in light of some results due to Silva et al. [48], Heinz et al. [49],
Ván and Biró [50], Ván [51], Muronga [42], Maartens [43], is to form a generic causal the-
ory (heat-conduting, viscous, particle-creating) which is valid both in Eckart and Landau
frames.

In a first work [24] we developed a second-order theory for relativistic fluid with thermal
conduction and examine the propagation of weak discontinuities in the special case of
ultrarelativistic fluids in Landau-Lifshitz scheme.

In a second paper (the present), similar study is done in Eckart formulation.
In a forthcoming work, results will be compared and the two schemes will be general-

ized in order to consider the hypothesis (found in Carter [31] and recently picked up by
Andersson and Comer [20]) of state of equilibrium in which particle current and entropy
flux are not aligned.

Moreover, hypothesis about relation between bulk viscosity and matter creation, found
in [52, 53, 54], will be detailed. Finally, we will land studies to arrive in the realization of
that work that permit applications in RHIC and LHC [46, 42].
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[30] A. M. Anile, Relativistic Fluids and Magneto-fluids (Cambridge University Press, Cambridge, 1989).
[31] B. Carter, Covariant theory of conductivity in ideal fluid or solid media, in Relativistic Fluid Dynamics, A.

Anile and Y. Choquet-Bruhat eds., Springer-Verlag, Berlin 1989, pp. 1–64.

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 90, No. 1, A2 (2012) [18 pages]
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